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Learning fromMultiple Annotators

Traditional supervised learning

I Ground truth labels are given by a single annotator - oracle

I Training set D = {(xi, yi)}Ni=1
where, xi ∈ X is a d-dimensional feature vector
and yi ∈ Y is the known label for it

I The task is to learn a function f : X → Y
which can be used on unseen data

Multiple-annotator learning

I Each example may be labeled by one or more annotators
I Labels may be unreliable (noise)

3/56



Learning fromMultiple Annotators

Traditional supervised learning

I Ground truth labels are given by a single annotator - oracle

I Training set D = {(xi, yi)}Ni=1
where, xi ∈ X is a d-dimensional feature vector
and yi ∈ Y is the known label for it

I The task is to learn a function f : X → Y
which can be used on unseen data

Multiple-annotator learning

I Each example may be labeled by one or more annotators
I Labels may be unreliable (noise)

3/56



Everyone has been an annotator!

reCAPTCHA - www.captcha.net
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Application Scenarios
Quang’s review [Quang, 2013] presents the following three
scenarios:

I Each example is labeled by large number of annotators
I Labels from a single annotator are unreliable
I Can we come up with a consensus "true" label?
I e.g. Crowd-sourcing services like MTurk

I Different annotators label non-overlapping set of
examples

I Labeling tasks are expensive and require domain expertise
I Can we distribute the labeling tasks?
I e.g. Medical domain training data

I Different annotators label overlapping sets of examples
I Some examples labeled by one others by many people
I Can we come up with a consensus model and also explore

the relations between different annotators?
I e.g. Some patients examined by one or several patients
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While we are talking about applications...
According to Quinn and Bederson’s survey on Human
computation [Quinn, 2011]:

These applications may fall at the intersection of:
I Crowdsourcing

- outsourcing work to a group in an open call
I Human computation

- extract work that is "difficult for computers"
- directed by a computational process

6/56



Back to the learning process...

For each example i in the training set D,
We don’t have the actual label zi

But, have multiple (possibly noisy) labels
y1i , ..., yMi provided byM annotators

Learning the "true"
label
1. Find "true" labels

representative of the
provided labels

2. These labels can be
then used to learn a
predictive model

Learning a consensus
model
1. Consensus model is

representative of
different annotators

2. Can be then applied
directly for future
predictions
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Learning the "true" labels

I Motivated by the crowd-sourcing applications
I The objective is to find the (true) consensus label, zi for

each example
I We assume the examples are labeled without explicit

feature vectors - like we have in many crowdsourcing
applications

I The simplest approach would to use amajority vote:

For each example i ∈ {1, 2...,N},

zi =

{
1 1

M
∑M

j=1 y
j
i > 0.5

0 otherwise
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Problems with Majority Vote

I Assumes that all experts are equally good
I If one reviewer is very reliable and other ones are not, the

majority vote would sway the consensus values away from
the reliable labels

I What if we introduce weights representing the quality of
the reviews?

I This brings us toDawid and Skene’s model [Dawid, 1979].
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Dawid and Skene’s model

πj

yji zi

K N

I Again, zi denotes the hidden true label for example i
I yji denote the label provided by an annotator j
I πj (hidden) represent the quality of reviews provided by

each annotator
- There can be variables each for modeling accuracy using a
confusion matrix

I Use an EM algorithm to learn yis (E step) and πks (M step)
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Online Crowdsourcing model

I Imagine a Mechanical Turk like setting where you have
access to a large pool of annotators

I The quality of labels varies - good and bad annotators

I Start by seeking a large number of labels from different
annotators

I Can we identify annotators providing high quality labels?
I Then we can obtain "true" labels with fewer reliable

annotators

I Again, we don’t really have access to "true" labels!
- Welinder and Perona’s model
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Welinder and Perona’s model

I Each example i has an unknown "true" label, {zi}Ni=1
- We can also encode our prior belief using another
parameter ζ

I The expertise ofM annotators is described by a vector of
parameters, {aj}Mj=1

- e.g. aj = aj, models the simple accuracy of annotator j
- Again, we can put another parameter α for the priors

I Each annotator can provide labels for all or a subset of
examples.

- Let each example i be labeled by a set of Ai annotators
- It’s set of labels are denoted by Li = {lij}j∈Ai
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Welinder and Perona’s model

ζ zi li,j aj α

i, j

N |L| M

p(L, z, a) =

N∏
i=1

p(zi|ζ)

M∏
j=1

p(aj|α)
∏
lij∈L

p(lij|zi, aj)
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Estimating the parameters using EM

ζ zi li,j aj α

i, j

N |L| M

I We observe only L, we need to estimate the hidden
variables
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Estimating the parameters using EM

ζ zi li,j aj α

i, j

N |L| M

I E-Step Assume a current estimate for the ajs, â and
compute the posterior for the true labels

- Use priors ζ for the first iteration
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Estimating the parameters using EM

ζ zi li,j aj α

i, j

N |L| M

I E-Step Assume a current estimate for the ajs, â and
compute the posterior for the true labels

p̂(z) = p(z|L, â) ∝ p(z)p(L|z, â) =

N∏
i=1

p̂(zi)

p̂(zi) = p(zi|ζ)
∏
j∈Ai

p(lij|zii, âj)
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Estimating the parameters using EM

ζ zi li,j aj α

i, j

N |L| M

I M-StepWe need to maximize the the expectation of the
log of the posterior on a using the estimated p̂(z) and â
from the previous iteration:

a∗ = argmax
a

Q(a, â)

p(a|z,L, α) ∝ p(L|z, a)p(a|α)

Q(a, â) = Ez[log p(L|z, a) + log p(a|α)]
18/56



Estimating the parameters using EM

I M-Step

Q(a, â) = Ez[log p(L|z, a) + log p(a|α)]

I Optimization can be carried out for each annotator
separately, using only the labels provided by them:

Q(a, â) =

M∑
j=1

Qj(aj, âj)

and,

Qj(aj, âj) = log p(aj|α) +
∑

i∈{1,...N}

Ezi [log p(lij|zi, aj)]
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Online Estimation

I By looking at p̂(z)s, we can estimate how confident we are
about a particular label. Also, ajs can tell us about the
performance of the annotators.

I Label Collection
I We can ask for more labels for examples where the target zi

values are still uncertain

I Annotator Evaluation
I Expert annotators have the variance of their aj less than a

specific threshold
I We can give more work to expert annotators and save

money as fewer total labels would be required
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Remarks
I An example set of MTurk experiments:

I We can make slight modifications to the model to allow
different types of annotations: Binary, Multi-valued, and
also Continuous labels.
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But then again, we are dealing with "human"
annotators

Figure: moot wins, Time
Inc. loses
[Music Machinery, 2009]
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But then again, we are dealing with "human"
annotators

I Annotators want to "optimize" for time and money
I Need to design tasks carefully! [Kittur, 2008]
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Learning the consensus models

I Primary goal is to learn a consensus model that can be
used in future for prediction

I Discovering the abilities of the experts comes as a bonus
I We do care about the feature vectors xi in this case

I We will cover two models under this:
- [Raykar, 2010]’s model to learn annotator reliability and the
consensus model

- Learning different expert classification models and finding
consensus [Valizadegan, 2013]
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Learning from Crowds

I We want to jointly learn the consensus model, annotator
accuracy and the "true" label

I We measure the performance of an annotators in terms of
sensitivity (α) and specificity (β)

I Assume logistic regression for classification (Can be
changed)

I Annotators are not expected to label all instances. We use
EM to estimate them as well
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Two Coin Model

I Training set D = {(xi, y1i , ...., yMi )}Ni=1
I For each annotator j, let zi be the actual label for an example

Sensitivity αj = p(yj = 1|zi = 1)
Specificity βj = p(yj = 0|zi = 0)

I We assume that αj and βj do not depend on the feature
vector xi
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Learning Framework

I Training set D = {(xi, y1i , ...., yMi )}Ni=1

I The objective is to learn the weight vector w and the
sensitivity α = [α1, ...αM] and specificity β = [β1, ...βM] of
M annotators.

I We will also estimate the "true" labels z1, ...zN

I Classification is done by a logistic function
P[zi = 1|xi,w] = σ(wTx)

where, σ(z) = 1
1+e−z
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Maximum Likelihood Estimator

yki zi

xi

wαjβj

N

M

I The likelihood function can be factored as:

p[D|Θ] ∝
N∏
i=1

p[y1i , ...yMi |xi,Θ]

where, Θ = {w,α,β}
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Maximum Likelihood Estimator

yki zi

xi

wαjβj

N

M

I The likelihood function can be factored as:

p[D|Θ] ∝
N∏
i=1

p[y1i , ...yMi |zi = 1,α]p[zi = 1|xi,w]

+ p[y1i , ...yMi |zi = 0,β]p[zi = 0|xi,w]
30/56



Maximum Likelihood Estimator

I We also assume that annotators provide labels
independently:

p[y1i , ...yMi |zi = 1,α] =

M∏
j=1

p[yji|zi = 1, αj] =

M∏
j=1

[αj]y
j
i [1− αj]1−y

j
i

p[y1i , ...yMi |zi = 0,β] =

M∏
j=1

[βj]1−y
j
i [1− βj]y

j
i
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Maximum Likelihood Estimator
I Therefore, the likelihood can be written as:

p[D|Θ] ∝
N∏
i=1

[aipi + bi(1− pi)],

where,

pi = σ(wTx)

ai =
M∏
j=1

[αj]y
j
i [1− αj]1−y

j
i

bi =

M∏
j=1

[βj]1−y
j
i [1− βj]y

j
i

I Θ̂ML = {α̂, β̂, ŵ} = argmaxΘ log p[D|Θ]
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Estimating the parameters using EM

p[D|Θ] ∝
N∏
i=1

[aipi + bi(1− pi)]

I Now, if we consider the "true" labels z = [z1, ...zN ] as
hidden data.

I So, the complete likelihood can be written as:

p[z,D|Θ] ∝
M∏
i=1

[aipi]zi + [bi(1− pi)](1−zi)

log p[z,D|Θ] ∝
M∑
i=1

zilog aipi + (1− zi)log bi(1− pi),
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Estimating the parameters using EM

I E-Step Assume a current estimate for the zjs, ẑ
- We can use majority votes as an initialization for ẑ

E{log p[z,D|Θ]} ∝
M∑
i=1

ẑi log aipi + (1− ẑi) log bi(1− pi),

ẑi ∝ p[y1i , ..., yMi |zi = 1,Θ]p[yi = 1|xi,Θ]

=
aipi

aipi + bi(1− pi)
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Estimating the parameters using EM
I M-Step Based on the current estimate for ẑ, we now

estimate Θ by maximizing Q(Θ|Θ̂) given the previous
estimate.

I We have a closed form solution for αj and βj:

αj =

∑N
i=1 ẑiz

j
i∑N

i=1 ẑi
, βj =

∑N
i=1(1− ẑi)(1− zji)∑N

i=1(1− ẑi)

I But for w, we must use a gradient-ascent based
optimization.

wt+1 = wt − ηH−1g

where, g is the gradient vector and H is the Hessian matrix
(See [Raykar, 2010])
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Remarks and special cases
Not using features

I If we remove the features xi from the model, we’ll obtain a
result similar to [Dawid, 1979], [Welinder, 2010].

Using Bayesian priors

I We may want to trust a particular expert more than the
others

I We can impose beta priors for sensitivity and specificity
I Similarly, we may also assume a zero mean Gaussian prior

on the weights w with an inverse covariance matrix Γ for
precision

- This acts as a L2 regularizer
I We can derive the EM estimates while assuming these

priors as well
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Remarks and special cases

Estimating gold-standard

I Similar to [Welinder, 2010], we can estimate the gold
standard by fixing threshold values for ẑis

Intuitive interpretation of the estimated label

logit(ẑi) = log (odds) = log p[zi = 1|y1i , ...yMi , xi,Θ]

p[zi = 0|y1i , ...yMi , xi,Θ]

= wTxi +

M∑
j=1

yji[logit(α
j) + logit(βj)] + constant...

I Thus, we have weighted linear combination of the labels
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Remarks and special cases

Multi-class classification

I This model can also be extended for multi-class labels
I We will have different sensitivity and specificity

parameters for each class
I The "indicator" exponents (zis) must be replaced by a delta

function, δ(u, v) = 1, if u = v and 0 otherwise
I Priors can be modeled by a Dirichlet function

Ordinal Regression

I Convert the ordinal data into a series of binary data
I Use multi-class approach
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Regression
I Let yji ∈ R be the continuous target value for instance i by

the j annotator
I Use a Gaussian noise model with mean as zi and

inverse-variance (precision) τ j:

p[yji|zi, τ
j] = N (yji, 1/τ

j)

I We assume the target value is given by a linear regression
model with additive Gaussian noise:

zi = wTxi + ε

where, ε is a zero-mean Gaussian random variable with
precision Υ.

p[zi|xi,w,Υ] = N (zi|wTxi, 1/Υ)

39/56



Regression

I Combining the annotator and regression models, we get:

p[yji|xi,w, τ
j,Υ] = N (yji|w

Txi, 1/τ j + 1/Υ)

where, the new precision term (λ) can be written as
1/λj = 1/τ j + 1/Υ

p[yji|xi,w, λ
j] = N (yji|w

Txi, 1/λj)

40/56



Learning Framework

I Training set D = {(xi, y1i , ...., yMi )}Ni=1

I The objective is to learn the weight vector w and the
precision λ = [λ1, ...λM] of M annotators.
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Maximum Likelihood Estimator

I The likelihood function can be factored as:

p[D|Θ] ∝
N∏
i=1

p[y1i , ...yMi |xi,Θ]

where, Θ = {w,λ}
I Putting in the Gaussian model:

p[D|Θ] ∝
N∏
i=1

M∏
j=1
N (yji|w

Txi, 1/λj)

I Θ̂ML = {λ̂, ŵ} = argmaxΘ log p[D|Θ]
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Maximum Likelihood Estimator

I By equating the gradient of the log-likelihood to zero, we
get:

1
λ̂j

=
1
N

N∑
i=1

(yji − ŵTxi)2

ŵ = (

N∑
i=1

xixTi )−1
N∑
i=1

xi

∑M
j=1 λ̂

jyji∑M
j=1 λ̂

j

I We iterate these two steps until convergence
I Once we have Θ, we can also estimate the true values of zis
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Limitations

I The model does not estimate the difficulty of the training
instance

- More parameters may be added to capture the difficulty of
an instance

I The assumption that sensitivity and specificity are not
dependent on the the feature vector xi may not very
accurate:

p[D|Θ] ∝
N∏
i=1

p[y1i , ...yMi |zi = 1,α]p[zi = 1|xi,w]

+ p[y1i , ...yMi |zi = 0,β]p[zi = 0|xi,w]

As a result we may need to add another dependency on xi
thereby increasing the number of parameters to be learned
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Learning classification models from multiple experts
[Valizadegan, 2013]

I This is a multi-expert framework that builds:
1. a consensus model representing the classification model that

the experts converge to
2. individual expert models representing the class label

decisions exhibited by individual experts

I An important difference from the [Raykar, 2010] model
here is that there is more flexibility for the experts pick
examples to label
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Multi-expert Model

xki yki αk βk

wk u η

τα θα τβ θβ

Nk

K

I Consensus models has weights u and individual expert
models have wk

I αk is the self-consistency parameter
I βk is the consensus-consistency parameter. It models the

differences in the knowledge of expertise of experts
I Both αk and βk may have Gamma priors with two

hyper-parameters {τ, θ}
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Multi-expert Model

xki yki αk βk

wk u η

τα θα τβ θβ

Nk

K

I Then consensus model weights are defined by a Gaussian
distribution with zero means

p(u|0d, η) = N (0d, η−1Id)
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Multi-expert Model

xki yki αk βk

wk u η

τα θα τβ θβ

Nk

K

I Expert-specific models are noise corrupted versions of the
Gaussian models:

p(wk|u, βk) = N (u, β−1Id)
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Multi-expert Model

xki yki αk βk

wk u η

τα θα τβ θβ

Nk

K

I Finally, the parameters wk of the expert model relate
examples x to annotator labels:

p(yki |xki ,wk, αk) = N (wT
k x

k
i , 1/α)

49/56



Optimization

I We take the negative logarithm of the joint given the
matrix of examples and their labels provided by experts

- It now becomes a minimization problem

I Also the squared error term ‖yki −wT
k x

k
i ‖2 in the objective

function is replaced by a hinge loss: max(0, 1− ykiwT
k x

k
i )

- This adds a new set of parameter εki
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Optimization

I The objective function is optimized using the alternative
optimization approach

- Split the hidden variables into two: {α, β} and {u,w}

- Consider {αk, βk} are considered constants, learn {u,wk}
- Then fix {u,wk} and compute {αk, βk} by taking derivatives
with respect to them. This results in closed form solutions:

αk =
2(nk + θαk − 1)∑

yki =1 ε
k
i + 2ταk

βk =
2θβk

‖wk − u‖2 + 2τβk

- 1/αk ∝ the amount of misclassification of examples by
expert k with their own model

- 1/βk ∝ the difference with the consensus model
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Experimental Results

I Results of the consensus model when every example is
labeled by just one expert (left) vs. when all three experts
provide labels
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Experimental Results

I Expert-specific models
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