
Learning fromMultiple Annotators

Gaurav Trivedi

Intelligent Systems Program

gat23@pitt.edu

November 18, 2014

Overview

Introduction

Learning the "true" Labels
Majority vote model
Dawid and Skene’s model
Welinder and Perona’s model

Learning the consensus models
Learning from crowds model
Learning multi-expert models

References

2/56

Learning fromMultiple Annotators

Traditional supervised learning

I Ground truth labels are given by a single annotator - oracle

I Training set D = {(xi, yi)}Ni=1
where, xi ∈ X is a d-dimensional feature vector
and yi ∈ Y is the known label for it

I The task is to learn a function f : X → Y
which can be used on unseen data

Multiple-annotator learning

I Each example may be labeled by one or more annotators
I Labels may be unreliable (noise)

3/56

Learning fromMultiple Annotators

Traditional supervised learning

I Ground truth labels are given by a single annotator - oracle

I Training set D = {(xi, yi)}Ni=1
where, xi ∈ X is a d-dimensional feature vector
and yi ∈ Y is the known label for it

I The task is to learn a function f : X → Y
which can be used on unseen data

Multiple-annotator learning

I Each example may be labeled by one or more annotators
I Labels may be unreliable (noise)

3/56

Everyone has been an annotator!

reCAPTCHA - www.captcha.net

4/56

www.captcha.net

Application Scenarios
Quang’s review [Quang, 2013] presents the following three
scenarios:

I Each example is labeled by large number of annotators
I Labels from a single annotator are unreliable
I Can we come up with a consensus "true" label?
I e.g. Crowd-sourcing services like MTurk

I Different annotators label non-overlapping set of
examples

I Labeling tasks are expensive and require domain expertise
I Can we distribute the labeling tasks?
I e.g. Medical domain training data

I Different annotators label overlapping sets of examples
I Some examples labeled by one others by many people
I Can we come up with a consensus model and also explore

the relations between different annotators?
I e.g. Some patients examined by one or several patients

5/56

Application Scenarios
Quang’s review [Quang, 2013] presents the following three
scenarios:

I Each example is labeled by large number of annotators
I Labels from a single annotator are unreliable
I Can we come up with a consensus "true" label?
I e.g. Crowd-sourcing services like MTurk

I Different annotators label non-overlapping set of
examples

I Labeling tasks are expensive and require domain expertise
I Can we distribute the labeling tasks?
I e.g. Medical domain training data

I Different annotators label overlapping sets of examples
I Some examples labeled by one others by many people
I Can we come up with a consensus model and also explore

the relations between different annotators?
I e.g. Some patients examined by one or several patients

5/56

Application Scenarios
Quang’s review [Quang, 2013] presents the following three
scenarios:

I Each example is labeled by large number of annotators
I Labels from a single annotator are unreliable
I Can we come up with a consensus "true" label?
I e.g. Crowd-sourcing services like MTurk

I Different annotators label non-overlapping set of
examples

I Labeling tasks are expensive and require domain expertise
I Can we distribute the labeling tasks?
I e.g. Medical domain training data

I Different annotators label overlapping sets of examples
I Some examples labeled by one others by many people
I Can we come up with a consensus model and also explore

the relations between different annotators?
I e.g. Some patients examined by one or several patients

5/56

While we are talking about applications...
According to Quinn and Bederson’s survey on Human
computation [Quinn, 2011]:

These applications may fall at the intersection of:
I Crowdsourcing

- outsourcing work to a group in an open call
I Human computation

- extract work that is "difficult for computers"
- directed by a computational process

6/56

Back to the learning process...

For each example i in the training set D,
We don’t have the actual label zi

But, have multiple (possibly noisy) labels
y1i , ..., yMi provided byM annotators

Learning the "true"
label
1. Find "true" labels

representative of the
provided labels

2. These labels can be
then used to learn a
predictive model

Learning a consensus
model
1. Consensus model is

representative of
different annotators

2. Can be then applied
directly for future
predictions

7/56

Overview

Introduction

Learning the "true" Labels
Majority vote model
Dawid and Skene’s model
Welinder and Perona’s model

Learning the consensus models
Learning from crowds model
Learning multi-expert models

References

8/56

Learning the "true" labels

I Motivated by the crowd-sourcing applications
I The objective is to find the (true) consensus label, zi for

each example
I We assume the examples are labeled without explicit

feature vectors - like we have in many crowdsourcing
applications

I The simplest approach would to use amajority vote:

For each example i ∈ {1, 2...,N},

zi =

{
1 1

M
∑M

j=1 y
j
i > 0.5

0 otherwise

9/56

Problems with Majority Vote

I Assumes that all experts are equally good
I If one reviewer is very reliable and other ones are not, the

majority vote would sway the consensus values away from
the reliable labels

I What if we introduce weights representing the quality of
the reviews?

I This brings us toDawid and Skene’s model [Dawid, 1979].

10/56

Problems with Majority Vote

I Assumes that all experts are equally good
I If one reviewer is very reliable and other ones are not, the

majority vote would sway the consensus values away from
the reliable labels

I What if we introduce weights representing the quality of
the reviews?

I This brings us toDawid and Skene’s model [Dawid, 1979].

10/56

Dawid and Skene’s model

πj

yji zi

K N

I Again, zi denotes the hidden true label for example i
I yji denote the label provided by an annotator j
I πj (hidden) represent the quality of reviews provided by

each annotator
- There can be variables each for modeling accuracy using a
confusion matrix

I Use an EM algorithm to learn yis (E step) and πks (M step)
11/56

Online Crowdsourcing model

I Imagine a Mechanical Turk like setting where you have
access to a large pool of annotators

I The quality of labels varies - good and bad annotators

I Start by seeking a large number of labels from different
annotators

I Can we identify annotators providing high quality labels?
I Then we can obtain "true" labels with fewer reliable

annotators

I Again, we don’t really have access to "true" labels!
- Welinder and Perona’s model

12/56

Online Crowdsourcing model

I Imagine a Mechanical Turk like setting where you have
access to a large pool of annotators

I The quality of labels varies - good and bad annotators

I Start by seeking a large number of labels from different
annotators

I Can we identify annotators providing high quality labels?
I Then we can obtain "true" labels with fewer reliable

annotators

I Again, we don’t really have access to "true" labels!
- Welinder and Perona’s model

12/56

Welinder and Perona’s model

I Each example i has an unknown "true" label, {zi}Ni=1
- We can also encode our prior belief using another
parameter ζ

I The expertise ofM annotators is described by a vector of
parameters, {aj}Mj=1

- e.g. aj = aj, models the simple accuracy of annotator j
- Again, we can put another parameter α for the priors

I Each annotator can provide labels for all or a subset of
examples.

- Let each example i be labeled by a set of Ai annotators
- It’s set of labels are denoted by Li = {lij}j∈Ai

13/56

Welinder and Perona’s model

ζ zi li,j aj α

i, j

N |L| M

p(L, z, a) =

N∏
i=1

p(zi|ζ)

M∏
j=1

p(aj|α)
∏
lij∈L

p(lij|zi, aj)

14/56

Estimating the parameters using EM

ζ zi li,j aj α

i, j

N |L| M

I We observe only L, we need to estimate the hidden
variables

15/56

Estimating the parameters using EM

ζ zi li,j aj α

i, j

N |L| M

I E-Step Assume a current estimate for the ajs, â and
compute the posterior for the true labels

- Use priors ζ for the first iteration

16/56

Estimating the parameters using EM

ζ zi li,j aj α

i, j

N |L| M

I E-Step Assume a current estimate for the ajs, â and
compute the posterior for the true labels

p̂(z) = p(z|L, â) ∝ p(z)p(L|z, â) =

N∏
i=1

p̂(zi)

p̂(zi) = p(zi|ζ)
∏
j∈Ai

p(lij|zii, âj)

17/56

Estimating the parameters using EM

ζ zi li,j aj α

i, j

N |L| M

I M-StepWe need to maximize the the expectation of the
log of the posterior on a using the estimated p̂(z) and â
from the previous iteration:

a∗ = argmax
a

Q(a, â)

p(a|z,L, α) ∝ p(L|z, a)p(a|α)

Q(a, â) = Ez[log p(L|z, a) + log p(a|α)]
18/56

Estimating the parameters using EM

I M-Step

Q(a, â) = Ez[log p(L|z, a) + log p(a|α)]

I Optimization can be carried out for each annotator
separately, using only the labels provided by them:

Q(a, â) =

M∑
j=1

Qj(aj, âj)

and,

Qj(aj, âj) = log p(aj|α) +
∑

i∈{1,...N}

Ezi [log p(lij|zi, aj)]

19/56

Online Estimation

I By looking at p̂(z)s, we can estimate how confident we are
about a particular label. Also, ajs can tell us about the
performance of the annotators.

I Label Collection
I We can ask for more labels for examples where the target zi

values are still uncertain

I Annotator Evaluation
I Expert annotators have the variance of their aj less than a

specific threshold
I We can give more work to expert annotators and save

money as fewer total labels would be required

20/56

Remarks
I An example set of MTurk experiments:

I We can make slight modifications to the model to allow
different types of annotations: Binary, Multi-valued, and
also Continuous labels.

21/56

But then again, we are dealing with "human"
annotators

Figure: moot wins, Time
Inc. loses
[Music Machinery, 2009]

22/56

But then again, we are dealing with "human"
annotators

I Annotators want to "optimize" for time and money
I Need to design tasks carefully! [Kittur, 2008]

23/56

Overview

Introduction

Learning the "true" Labels
Majority vote model
Dawid and Skene’s model
Welinder and Perona’s model

Learning the consensus models
Learning from crowds model
Learning multi-expert models

References

24/56

Learning the consensus models

I Primary goal is to learn a consensus model that can be
used in future for prediction

I Discovering the abilities of the experts comes as a bonus
I We do care about the feature vectors xi in this case

I We will cover two models under this:
- [Raykar, 2010]’s model to learn annotator reliability and the
consensus model

- Learning different expert classification models and finding
consensus [Valizadegan, 2013]

25/56

Learning from Crowds

I We want to jointly learn the consensus model, annotator
accuracy and the "true" label

I We measure the performance of an annotators in terms of
sensitivity (α) and specificity (β)

I Assume logistic regression for classification (Can be
changed)

I Annotators are not expected to label all instances. We use
EM to estimate them as well

26/56

Two Coin Model

I Training set D = {(xi, y1i ,, yMi)}Ni=1
I For each annotator j, let zi be the actual label for an example

Sensitivity αj = p(yj = 1|zi = 1)
Specificity βj = p(yj = 0|zi = 0)

I We assume that αj and βj do not depend on the feature
vector xi

27/56

Learning Framework

I Training set D = {(xi, y1i ,, yMi)}Ni=1

I The objective is to learn the weight vector w and the
sensitivity α = [α1, ...αM] and specificity β = [β1, ...βM] of
M annotators.

I We will also estimate the "true" labels z1, ...zN

I Classification is done by a logistic function
P[zi = 1|xi,w] = σ(wTx)

where, σ(z) = 1
1+e−z

28/56

Maximum Likelihood Estimator

yki zi

xi

wαjβj

N

M

I The likelihood function can be factored as:

p[D|Θ] ∝
N∏
i=1

p[y1i , ...yMi |xi,Θ]

where, Θ = {w,α,β}
29/56

Maximum Likelihood Estimator

yki zi

xi

wαjβj

N

M

I The likelihood function can be factored as:

p[D|Θ] ∝
N∏
i=1

p[y1i , ...yMi |zi = 1,α]p[zi = 1|xi,w]

+ p[y1i , ...yMi |zi = 0,β]p[zi = 0|xi,w]
30/56

Maximum Likelihood Estimator

I We also assume that annotators provide labels
independently:

p[y1i , ...yMi |zi = 1,α] =

M∏
j=1

p[yji|zi = 1, αj] =

M∏
j=1

[αj]y
j
i [1− αj]1−y

j
i

p[y1i , ...yMi |zi = 0,β] =

M∏
j=1

[βj]1−y
j
i [1− βj]y

j
i

31/56

Maximum Likelihood Estimator
I Therefore, the likelihood can be written as:

p[D|Θ] ∝
N∏
i=1

[aipi + bi(1− pi)],

where,

pi = σ(wTx)

ai =
M∏
j=1

[αj]y
j
i [1− αj]1−y

j
i

bi =

M∏
j=1

[βj]1−y
j
i [1− βj]y

j
i

I Θ̂ML = {α̂, β̂, ŵ} = argmaxΘ log p[D|Θ]

32/56

Estimating the parameters using EM

p[D|Θ] ∝
N∏
i=1

[aipi + bi(1− pi)]

I Now, if we consider the "true" labels z = [z1, ...zN] as
hidden data.

I So, the complete likelihood can be written as:

p[z,D|Θ] ∝
M∏
i=1

[aipi]zi + [bi(1− pi)](1−zi)

log p[z,D|Θ] ∝
M∑
i=1

zilog aipi + (1− zi)log bi(1− pi),

33/56

Estimating the parameters using EM

I E-Step Assume a current estimate for the zjs, ẑ
- We can use majority votes as an initialization for ẑ

E{log p[z,D|Θ]} ∝
M∑
i=1

ẑi log aipi + (1− ẑi) log bi(1− pi),

ẑi ∝ p[y1i , ..., yMi |zi = 1,Θ]p[yi = 1|xi,Θ]

=
aipi

aipi + bi(1− pi)

34/56

Estimating the parameters using EM
I M-Step Based on the current estimate for ẑ, we now

estimate Θ by maximizing Q(Θ|Θ̂) given the previous
estimate.

I We have a closed form solution for αj and βj:

αj =

∑N
i=1 ẑiz

j
i∑N

i=1 ẑi
, βj =

∑N
i=1(1− ẑi)(1− zji)∑N

i=1(1− ẑi)

I But for w, we must use a gradient-ascent based
optimization.

wt+1 = wt − ηH−1g

where, g is the gradient vector and H is the Hessian matrix
(See [Raykar, 2010])

35/56

Remarks and special cases
Not using features

I If we remove the features xi from the model, we’ll obtain a
result similar to [Dawid, 1979], [Welinder, 2010].

Using Bayesian priors

I We may want to trust a particular expert more than the
others

I We can impose beta priors for sensitivity and specificity
I Similarly, we may also assume a zero mean Gaussian prior

on the weights w with an inverse covariance matrix Γ for
precision

- This acts as a L2 regularizer
I We can derive the EM estimates while assuming these

priors as well

36/56

Remarks and special cases

Estimating gold-standard

I Similar to [Welinder, 2010], we can estimate the gold
standard by fixing threshold values for ẑis

Intuitive interpretation of the estimated label

logit(ẑi) = log (odds) = log p[zi = 1|y1i , ...yMi , xi,Θ]

p[zi = 0|y1i , ...yMi , xi,Θ]

= wTxi +

M∑
j=1

yji[logit(α
j) + logit(βj)] + constant...

I Thus, we have weighted linear combination of the labels

37/56

Remarks and special cases

Multi-class classification

I This model can also be extended for multi-class labels
I We will have different sensitivity and specificity

parameters for each class
I The "indicator" exponents (zis) must be replaced by a delta

function, δ(u, v) = 1, if u = v and 0 otherwise
I Priors can be modeled by a Dirichlet function

Ordinal Regression

I Convert the ordinal data into a series of binary data
I Use multi-class approach

38/56

Regression
I Let yji ∈ R be the continuous target value for instance i by

the j annotator
I Use a Gaussian noise model with mean as zi and

inverse-variance (precision) τ j:

p[yji|zi, τ
j] = N (yji, 1/τ

j)

I We assume the target value is given by a linear regression
model with additive Gaussian noise:

zi = wTxi + ε

where, ε is a zero-mean Gaussian random variable with
precision Υ.

p[zi|xi,w,Υ] = N (zi|wTxi, 1/Υ)

39/56

Regression

I Combining the annotator and regression models, we get:

p[yji|xi,w, τ
j,Υ] = N (yji|w

Txi, 1/τ j + 1/Υ)

where, the new precision term (λ) can be written as
1/λj = 1/τ j + 1/Υ

p[yji|xi,w, λ
j] = N (yji|w

Txi, 1/λj)

40/56

Learning Framework

I Training set D = {(xi, y1i ,, yMi)}Ni=1

I The objective is to learn the weight vector w and the
precision λ = [λ1, ...λM] of M annotators.

41/56

Maximum Likelihood Estimator

I The likelihood function can be factored as:

p[D|Θ] ∝
N∏
i=1

p[y1i , ...yMi |xi,Θ]

where, Θ = {w,λ}
I Putting in the Gaussian model:

p[D|Θ] ∝
N∏
i=1

M∏
j=1
N (yji|w

Txi, 1/λj)

I Θ̂ML = {λ̂, ŵ} = argmaxΘ log p[D|Θ]

42/56

Maximum Likelihood Estimator

I By equating the gradient of the log-likelihood to zero, we
get:

1
λ̂j

=
1
N

N∑
i=1

(yji − ŵTxi)2

ŵ = (

N∑
i=1

xixTi)−1
N∑
i=1

xi

∑M
j=1 λ̂

jyji∑M
j=1 λ̂

j

I We iterate these two steps until convergence
I Once we have Θ, we can also estimate the true values of zis

43/56

Limitations

I The model does not estimate the difficulty of the training
instance

- More parameters may be added to capture the difficulty of
an instance

I The assumption that sensitivity and specificity are not
dependent on the the feature vector xi may not very
accurate:

p[D|Θ] ∝
N∏
i=1

p[y1i , ...yMi |zi = 1,α]p[zi = 1|xi,w]

+ p[y1i , ...yMi |zi = 0,β]p[zi = 0|xi,w]

As a result we may need to add another dependency on xi
thereby increasing the number of parameters to be learned

44/56

Learning classification models from multiple experts
[Valizadegan, 2013]

I This is a multi-expert framework that builds:
1. a consensus model representing the classification model that

the experts converge to
2. individual expert models representing the class label

decisions exhibited by individual experts

I An important difference from the [Raykar, 2010] model
here is that there is more flexibility for the experts pick
examples to label

45/56

Multi-expert Model

xki yki αk βk

wk u η

τα θα τβ θβ

Nk

K

I Consensus models has weights u and individual expert
models have wk

I αk is the self-consistency parameter
I βk is the consensus-consistency parameter. It models the

differences in the knowledge of expertise of experts
I Both αk and βk may have Gamma priors with two

hyper-parameters {τ, θ}
46/56

Multi-expert Model

xki yki αk βk

wk u η

τα θα τβ θβ

Nk

K

I Then consensus model weights are defined by a Gaussian
distribution with zero means

p(u|0d, η) = N (0d, η−1Id)

47/56

Multi-expert Model

xki yki αk βk

wk u η

τα θα τβ θβ

Nk

K

I Expert-specific models are noise corrupted versions of the
Gaussian models:

p(wk|u, βk) = N (u, β−1Id)

48/56

Multi-expert Model

xki yki αk βk

wk u η

τα θα τβ θβ

Nk

K

I Finally, the parameters wk of the expert model relate
examples x to annotator labels:

p(yki |xki ,wk, αk) = N (wT
k x

k
i , 1/α)

49/56

Optimization

I We take the negative logarithm of the joint given the
matrix of examples and their labels provided by experts

- It now becomes a minimization problem

I Also the squared error term ‖yki −wT
k x

k
i ‖2 in the objective

function is replaced by a hinge loss: max(0, 1− ykiwT
k x

k
i)

- This adds a new set of parameter εki

50/56

Optimization

I The objective function is optimized using the alternative
optimization approach

- Split the hidden variables into two: {α, β} and {u,w}

- Consider {αk, βk} are considered constants, learn {u,wk}
- Then fix {u,wk} and compute {αk, βk} by taking derivatives
with respect to them. This results in closed form solutions:

αk =
2(nk + θαk − 1)∑

yki =1 ε
k
i + 2ταk

βk =
2θβk

‖wk − u‖2 + 2τβk

- 1/αk ∝ the amount of misclassification of examples by
expert k with their own model

- 1/βk ∝ the difference with the consensus model

51/56

Experimental Results

I Results of the consensus model when every example is
labeled by just one expert (left) vs. when all three experts
provide labels

52/56

Experimental Results

I Expert-specific models

53/56

Overview

Introduction

Learning the "true" Labels
Majority vote model
Dawid and Skene’s model
Welinder and Perona’s model

Learning the consensus models
Learning from crowds model
Learning multi-expert models

References

54/56

References

[Dawid, 1979] A. P. Dawid and A. M. Skene. Maximum likelihood estimation
of observer error-rates using the EM algorithm. Applied Statistics,
28(1):20-28, 1979.

[Kittur, 2008] Aniket Kittur, Ed H. Chi, and Bongwon Suh. 2008.
Crowdsourcing user studies with Mechanical Turk. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08).
ACM, New York, NY, USA, 453-456.

[Music Machinery, 2009] moot wins, Time Inc. loses (April 2009). Retrieved
from http://musicmachinery.com/2009/04/27/
moot-wins-time-inc-loses/.

[Quang, 2013] Quang Nguyen (2013). A short review of learning with
multiple annotators (Section from Q. Nguyen’s thesis proposal).

[Quinn, 2011] Alexander J. Quinn and Benjamin B. Bederson. 2011. Human
computation: a survey and taxonomy of a growing field. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’11). ACM, New York, NY, USA, 1403-1412.

55/56

http://musicmachinery.com/2009/04/27/moot-wins-time-inc-loses/
http://musicmachinery.com/2009/04/27/moot-wins-time-inc-loses/

References

[Raykar, 2010] Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo
Hermosillo Valadez, Charles Florin, Luca Bogoni, and Linda Moy. 2010.
Learning From Crowds. Journal of Machine Learning Research 11 (August
2010), 1297-1322.

[Valizadegan, 2013] Valizadegan, Hamed et al. Learning classification
models from multiple experts. Journal of Biomedical Informatics, Volume
46 , Issue 6 , 1125 - 1135

[Welinder, 2010] Peter Welinder and Pietro Perona. Online crowdsourcing:
rating annotators and obtaining cost-effective labels. Workshop on
Advancing Computer Vision with Humans in the Loop (ACVHL), IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

56/56

	Introduction
	Learning the "true" Labels
	Majority vote model
	Dawid and Skene's model
	Welinder and Perona's model

	Learning the consensus models
	Learning from crowds model
	Learning multi-expert models

	References

